Natural beauty restored.

Lithium Disilicate Redefined
GC Initial™ LiSi Press
The revolutionary pressable ceramic

Imagine a pressable ceramic that outperforms all existing products. Imagine a pressable ceramic that is stronger, more durable, has better aesthetics and saves you significant lab time.

The first lithium disilicate ceramic with HDM technology

GC Initial™ LiSi Press is the first lithium disilicate ceramic ingot with High Density Micronization (HDM), a technology unique to GC that provides unsurpassed physical properties and the most natural, lifelike aesthetics of any pressed ceramic option on the market today. HDM uses equally dispersed lithium disilicate micro-crystals to fill the entire glass matrix rather than using traditional larger size crystals that do not take full advantage of the matrix structure. The result is the ultimate combination of strength and aesthetics, making GC Initial™ LiSi Press perfectly suitable for all types of restoration through all levels of transparency. Critically, HDM technology helps ensure the product remains super stable, without distortion or drop in value, even after multiple firings.

GC Initial™ LiSi Press has an extremely high density thanks to:
• optimised components
• a proprietary innovative new manufacturing technology (HDM technology)
Finally!
A lithium disilicate ceramic with the aesthetics and strength technicians demand without being low in value.
Press for a beautiful smile

GC Initial™ LiSi Press is optimised to be used with the rest of the GC Initial™ family, including the already proven GC Initial™ LiSi veneering ceramic and GC Initial™ Lustre Pastes NF – our universal 3D paintable ceramics, further enhancing aesthetics over the widest possible indications. And remember too, use GC Initial™ LiSi Press with our dual-cure adhesive resin cement, G-CEM LinkForce™, and you will achieve extraordinarily strong and durable bonds.

Love GC Initial™ LiSi Press’s:

- **Unsurpassed flexural strength**
- **Unparallelled aesthetics**
 - Richer, warmer, brighter colours with excellent fluorescence
 - Predictable material and colour stability after repeated firings
 - Optimised for use with GC Initial™ LiSi veneering ceramic and GC Initial™ Lustre Pastes NF
- **Real time savings**
- **Lower solubility than other leading brands** – permanent gloss
- **Antagonist-friendly and wear-resistant**
- **Almost no reaction layer when divested** – cleaner presses
 - Easy layer removal with glass bead blasting – no hydrofluoric acid
- **Seamless learning curve**
Unsurpassed physical properties

High flexural strength
Biaxial Flexural Strength of Press Ceramics

Lower solubility
Amount of Solubility for each Sample under 4 vol.% Acetic Acid

Antagonist friendly
Abrasion Depth of HAp Antagonist after 400,000 Slides

Wear resistant
Abrasion Depth of Material after 400,000 Slides

GCC R&D Internal test results following ISO6872:2015 (data on file)
Unparalleled aesthetics

Shade Selection
- Simplified shade line-up
- Reduction of inventory and cost
- Adaptable for a highly aesthetic build-up

Available in 4 translucencies

| Trans. Level | Bleach | A1 | A2 | A3 | A3.5 | A4 | B1 | B2 | B3 | B4 | C1 | C2 | C3 | C4 | D2 | D3 | D4 |
|--------------|--------|----|----|----|------|----|----|----|----|----|----|----|----|----|----|----|
| MT | MT-B00 | MT-B0 | MT-A1 | MT-A2 | MT-A3 | MT-B1 | MT-B2 | MT-C1 | MT-C2 | MT-D2 |
| LT-IQ | LT-B00 | LT-B0 | LT-A1 | LT-A2 | LT-A3 | LT-B1 | LT-B2 | LT-C1 | LT-C2 | LT-D2 |
| MO | MO-0 | MO-1 | MO-2 | MO-1 | MO-2 | MO-1 | MO-2 |

High Translucency (HT) – Enamel replacement
Best transparency match to natural tooth enamel, does not look dark (low value) in the mouth.

Medium Translucency (MT) – Press & stain
V-Shade line-up with warm colors from the Initial family of ceramic materials.

Low Translucency (LT) – Stain or layer
Low translucency ingots, following the V-Shade line-up. Ideal for staining or cut-back layering with GC Initial™ LiSi.

Low Translucency (LT-IQ) – One body concept A, B, C, D or Layer
Compact color line-up following the One Body concept.

Medium Opacity (MO) – Layering
Thanks to strong fluorescence, a life-like sense of colour can be reproduced when veneering Initial LiSi Porcelain.
Processing & indications

<table>
<thead>
<tr>
<th>Processing techniques</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staining Technique</td>
<td></td>
</tr>
<tr>
<td>Cut-Back Technique</td>
<td></td>
</tr>
<tr>
<td>Layering Technique</td>
<td></td>
</tr>
<tr>
<td>Veneers</td>
<td></td>
</tr>
<tr>
<td>Inlays</td>
<td></td>
</tr>
<tr>
<td>Onlays</td>
<td></td>
</tr>
<tr>
<td>Crowns</td>
<td></td>
</tr>
<tr>
<td>3-Unit Bridges</td>
<td></td>
</tr>
</tbody>
</table>

- HT
- MT
- LT
- LT-IQ
- MO

Courtesy MDT. Quini G., Spain

Courtesy MDT. D. Ibraimi, Switzerland
Natural light dynamics

Fluorescence starts from the internal frame
MO-0 layered with GC Initial™ LiSi

Natural opalescence

Vibrant & brighter color tones

Image with courtesy of MDT. S. Roozen, Austria
Unparallelled aesthetic system approach

Optimised for use with GC Initial™ LiSi veneering ceramic and GC Initial™ Lustre Pastes NF, adding extra vitality to your pressed crowns!

Courtesy MDT. M. Brüsch, Germany
Stability during multiple firings

Initial LiSi Press
Before firing

Simulating the margin, specimen with edge was fired repeatedly. No warping or cracking after multiple firings.

Initial LiSi Press
After firing

Conventional lithium disilicate press ceramic

Results after 5th firing (770°C 1min, Hold). Test conducted by Masayuki Hoshi, RDT.

Superior polishability

Comparison of Gloss after Polishing with Diamond Paste

| Method: Polishing surface of each product after APF etching by using Robinson® Bristle Brush® with Zircon Brite® under the same condition (8,000rpm). |
Initial LiSi Press	Conventional lithium disilicate press ceramic		
Gloss (%)	APF 30min	1st Polish	2nd Polish
89	80	95	87

Data on file.

Method:
Polishing surface of each product after APF etching by using Robinson® Bristle Brush® with Zircon Brite® under the same condition (8,000rpm).
Invest & Press
GC LiSi PressVest

Investing made easy!

- High fluidity
- Long working time
- Stable setting time
- More flexible time to furnace
- Time savings – great for lab workflows
- Wider sprueing capacity
- Better internal adaptation
- Easy removal of reaction layer
 - no hydrofluoric acid

It’s simply easier to use!

There is only a minimal reaction layer with GC LiSi PressVest, and it is easily removed just with glass beads. There is no need for hazardous hydrofluoric acid or alumina blasting. A key element in reaction layer inhibition is the GC LiSi PressVest SR (Surface Refining) Liquid, which is lightly sprayed on the intaglio before investing.
The Secret of GC LiSi PressVest

Less generation and easier removal of reaction layer

By using a unique release agent in the investment powder and LiSi PressVest SR liquid, a gap or "tear off line" is created, resulting in an easily broken reaction layer.

LiSi PressVest SR Liquid is sprayed to the intaglio (inside) of the crown, in which there is generally a stronger reaction layer.

Conventional lithium disilicate press ceramic

Reaction layer: Hybrid layer consisting of investment and press material
High fluidity & long working time

<table>
<thead>
<tr>
<th>Time until inserting invested pattern into burn out oven</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 min. to 180 min.</td>
</tr>
<tr>
<td>Invested pattern can be inserted into oven up to 160 minutes.</td>
</tr>
</tbody>
</table>
Time saving

<table>
<thead>
<tr>
<th>Initial LiSi Press</th>
<th>Conventional lithium disilicate press ceramic system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressing</td>
<td>Pressing</td>
</tr>
<tr>
<td>Divesting</td>
<td>Divesting</td>
</tr>
<tr>
<td>Glass beads</td>
<td>Glass beads</td>
</tr>
<tr>
<td>blasting</td>
<td>blasting</td>
</tr>
<tr>
<td></td>
<td>Hydrofluoric acid</td>
</tr>
<tr>
<td></td>
<td>Alumina blasting</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
</tr>
</tbody>
</table>

Time saved: Between 15-20 minutes. No need for hydrofluoric acid.
Unsurpassed marginal integrity

Initial LiSi Press

Conventional lithium disilicate press ceramic

Ideal marginal integrity with Initial LiSi Press

Strong & durable bond strengths

Courtesy CDT. A. Hodges, USA

Data on file.

Weakest point prone to chipping

Unsurpassed marginal integrity

Courtesy MDT. S. Maffei, Italy

Strong & durable bond strengths

THERMOCYCLE
* T.C. 0
** T.C. 5,000

Initial™ LiSi Press
GC G-CEM LinkForce™
Conventional lithium disilicate press ceramic with its dedicated luting cement
Cases with Initial™ LiSi, Family of Ceramics

Case by MDT. C. De Gracia, Spain
Case by MDT. J-C Allegre et Dr. Rousselet/Image by Dino Li, France

Case by MDT. S. Maffei, Italy
Case by MDT. P. Llobell, France

Case by MDT. B. Marais, USA
Case by MDT. P. Brito, Portugal

Case by MDT. M. Bladen, UK
Case by MDT. O. Yildirim and Dr. S. Tavas, Turkey

Case by MDT. Mirko Picone, Belgium
GC Initial™ LiSi Press packaging